NEWS


madshapR 2024-04-22

Bug fixes and improvements

deprecated functions

To avoid confusion with help(function), the function madshapR_help() has been renamed madshapR_website().

Dependency changes

madshapR 1.1.0 (2024-04-23)

madshapR 1.0.3 (2023-12-19)

Bug fixes and improvements

Some of the tests were made with another package (Rmonize) which as “madshapR” as a dependence.

Enhance reports

suppress overwrite parameter in dataset_visualize().

in dataset_summary() minor issue (consistency in column names and content).

Correct Data dictionary functions

enhance the function check_data_dict_valueType(), which was too slow.

valueType_adjust() now works with empty column (all NAs)

New functions

Deprecated functions

madshapR 1.0.2 (2023-10-09)

Creation of NEWS feed !!

Addition of NEWS.md for the development version use “(development version)”.

Bug fixes and improvements

Dependency changes

New Imports: haven, lifecycle

No longer in Imports: xfun

New functions

These functions are imported from fabR

This separation into 3 functions will allow future developments, such as render as a ppt or pdf.

deprecated functions

Due to another package development (see fabR), The function open_visual_report() has been deprecated in favor of bookdown_open() imported from fabR package.

madshapR 1.0.0 (2023-06-20)

This package is a collection of wrapper functions used in data pipelines.

This is still a work in progress, so please let us know if you used a function before and is not working any longer.

Helper functions

functions to generate, shape and format meta data.

These functions allows to create, extract transform and apply meta data to a dataset.

data_dict_collapse(),data_dict_expand(),data_dict_filter(), data_dict_group_by(),data_dict_group_split(),data_dict_list_nest(), data_dict_pivot_longer(),data_dict_pivot_wider(),data_dict_ungroup()

data_dict_match_dataset(),data_dict_apply(), data_dict_extract()

as_data_dict(), as_data_dict_mlstr(),as_data_dict_shape(), is_data_dict(), is_data_dict_mlstr(), is_data_dict_shape() as_taxonomy(), is_taxonomy()

functions to generate, shape and format data.

These functions allows to create, extract transform data/meta data from a dataset. A dossier is a list of datasets.

as_dataset(), as_dossier() is_dataset(), is_dossier()

Functions to work with data types

These functions allow user to work with, extract or assign data type (valueType) to values and/or dataset.

as_valueType(), is_valueType(), valueType_adjust(), valueType_guess(), valueType_self_adjust(), valueType_of()

Unit tests and QA for datasets and data dictionaries

These helper functions evaluate content of a dataset and/or data dictionary to extract from them irregularities or potential errors. These informations are stored in a tibble that can be use to assess inputs.

check_data_dict_categories(), check_data_dict_missing_categories(), check_data_dict_taxonomy(), check_data_dict_variables(), check_data_dict_valueType(), check_dataset_categories(), check_dataset_valueType(), check_dataset_variables(), check_name_standards()

Summarize information in dataset and data dictionaries

These helper functions evaluate content of a dataset and/or data dictionary to extract from them summary statistics and elements such as missing values, NA, category names, etc. These informations are stored in a tibble that can be use to summary inputs.

dataset_preprocess(), summary_variables(), summary_variables_categorical(),summary_variables_date(), summary_variables_numeric(),summary_variables_text()

Write and read excel and csv

Plot and summary functions used in a visual report

plot_bar(), plot_box(), plot_date(), plot_density(), plot_histogram(), plot_main_word(), plot_pie_valid_value(), summary_category(), summary_numerical(),summary_text()

aggregate information and generate reports

data_dict_evaluate() dataset_evaluate() dossier_evaluate()

dataset_summarize() dossier_summarize()

dataset_visualize() variable_visualize() open_visual_report()